

Welcome to The units library user guide and documentation!

The Units library provides a means of working with units of measurement at runtime, including conversion to and from strings. It provides a small number of types for working with units and measurements and operations necessary for user input and output with units.

This software was developed for use in LLNL/GridDyn [https://github.com/LLNL/GridDyn], and HELICS [https://github.com/GMLC-TDC/HELICS] and is currently a work in progress (though getting close). Namespaces, function names, and code organization is subject to change though is fairly stable at this point, input is welcome.

[image: codecov] [https://codecov.io/gh/LLNL/units] [image: Azure] [https://dev.azure.com/phlptp/units/_build/latest?definitionId=1&branchName=main] [image: Circle CI] [https://circleci.com/gh/LLNL/units] [image: License] [https://github.com/GMLC-TDC/HELICS-src/blob/main/LICENSE]

The Introduction is a discussion about the why? and How the library came together and a generally what it does and how it was tested.
The Installation and Linking guide is a discussion about linking and using the library, and the User Guide is the
how-to about how to use the software library. For the details see Details and to try out some of the string conversions check out Units on the Web
Finally Application Notes contains some discussions on particular applications and usages.

Basics

	Introduction

	Installation and Linking

	User Guide

	Application Notes

	The Low Level Details of the Units library

	Units on the Web

Introduction

Why?

So why have another units library? This was something we poked at for a while before writing the library.
There are number of other well designed C++ libraries but none of them met our needs. Some needs are pretty general, and others specific to power systems and electrical engineering.

Design Requirements

	have a units type that can be used in virtual function calls

	Handle unit conversions

	handle Per Unit operations and unit conversions

	handle complex units easily like $/puMw/hr

	Operate on strings with conversion to and from strings

Previously the library we were using met these requirements but only for a very limited set of units. This library functioned but was nearing the limits of maintainability and operation as new units were needed and other conversions were required which required adding direct conversions between the classes of units and the code was getting to be a mess. So, looking around, many of the existing unit libraries in C++ represent individual units as an individual type. This works wonderfully if you can know all the types you want to use ahead of time. In our case, many of the conversions depended on configuration or input files so the units being converted were not known at compile time. A few were but in general they were not. That led to an issue of how to do you pass that unit to a function that is meant to hide the internal unit in use, so having a type per unit did not seem functional from a coding or structural perspective.

Many of the dimensional analysis libraries, actually all as far as I can tell in C++, do not support string conversions. There are a few examples in Java or Python, but our code is written in C++ so that didn’t seem workable either. Which led to the conclusion that this library is needed and some additional design considerations.

	A small single compact type to represent all units (no bigger than a double) if we wanted to use it in a number of contexts.

	Another measurement type that was interoperable with doubles and numbers. Many numerical calculations came from a real array and numeric solver libraries so there is no opportunity to modify those types. Which means, we need double operations with measurements if we want to use them.

	constexpr as much as possible since many units are known at compile time and we need to be able to generate complex units from other simpler units.

	The library should be compatible with a broad range of compilers including some older ones back to GCC 4.7.

	a fairly expansive list of predefined units to simplify operation

Speaking with others, a few items and contexts came up such as recipes, trade documents, other software package unit representations, standardized string representation. Sometimes a lot of precision is needed, other times this is not the case.

And it would be nice to be able to deal with uncertainties in measurements, commodities, and containers.

	How It Works

	Testing

	Sources of Unit String Definitions

	Converter App

How It Works

Given the design requirements the choice was how to make a class that could represent physical units. The desire for it to be a compact class drove the decision to somewhat limit what could be represented to physically realizable units.

Unit Representation

The unit class consists of a multiplier and a representation of base units.
The seven SI units + radians + currency units + count units. In addition a unit has 4 flags, per-unit for per unit or ratio units. One flag[i_flag] that is a representation of imaginary units, one flags for a variety of purposes and to differentiate otherwise similar units[e_flag]. And a flag to indicate an equation unit. Due to the requirement that the base units fit into a 4 byte type the represented powers of the units are limited. The list below shows the bit representation range and observed range of use in equations and observed usage

	meter:[-8,+7] :normal range [-4,+4], intermediate ops [-6,+6]

	kilogram:[-4,+3] :normal range [-1,+1], intermediate ops [-2,+2]

	second:[-8,+7] :normal range [-4,+4], intermediate ops [-6,+6]

	ampere:[-4,+3] :normal range [-2,+2]

	kelvin:[-4,+3] :normal range [-4,+1]

	mole:[-2,+1] :normal range [-1,+1]

	candela:[-2,+1] :normal range [-1,+1]

	currency:[-2,+1] :normal range [-1,+1]

	count:[-2,+1] :normal range [-1,+1]

	radians:[-4,+3] :normal range [-2,+2]

These ranges were chosen to represent nearly all physical quantities that could be found in various disciplines we have encountered.

	SI units Publication guidelines [https://physics.nist.gov/cuu/pdf/sp811.pdf]

Testing

The Code for the units library is put through a series of CI tests before being merged.
Current tests include running on CI systems.

Unit Tests

The units library has a series of units tests that are executed as part of the CI builds and when developing. They are built using Google test module. The module is downloaded if the tests are built. It uses Release 1.10 from the google test github repository

	examples_test A simple executable that loads up some different types of measurements and does a few checks directly, it is mainly to test linking and has some useful features for helping with the code coverage measures.

	fuzz_issue_tests tests a set of past fuzzing failures, including, errors, glitches, timeouts, round trip failures, and some round trip failures with particular flags.

	test_all_unit_base DO NOT RUN THIS TEST it will take a very long time it does an exhaustive test of all possible unit bases to make sure the string conversion round trip works. I haven’t actually executed it all yet.

	test_commodities Run test using the commodity related functions and operations on precise_unit’s

	test_conversions1 a series of tests about specific conversions, such as temperature, SI prefixes, extended SI units, and some other general operations about conversions

	test_conversions2 run through a series of test units and conversion from one of the converter websites, there are number of files that get used that contain known conversions

	test_equation_units direct testing of the established equation units

	test_leadingNumbers run a bunch of checks on the leading number processing for units and measurements, convert a leading string into a numerical value

	test_measurement a series of tests on measurement objects including operations and comparisons, and construction

	test_measurement_strings a few tests on the basic to and from string operations for measurements

	test_pu tests of pu units and conversions

	test_random_round_trip randomly pick a few 32 bit number, assume they are a unit and do a string conversion and interpretation on them and make sure they produce the same thing

	test_ucum a series of tests coming from UCUM [https://github.com/lhncbc/ucum-lhc] the units library tries to handle all official strings and a majority of the full names, and aliases

	test_udunits a series of tests and test files coming from UDUNITS-2 [https://github.com/Unidata/UDUNITS-2] Not all the units convert, some never will since they are ambiguous but we will probably allow a few more over time

	test_uncertain_measurements test uncertain measurement operations using examples taken from web sources

	test_unit_ops test operations on units, including mathematical expressions and comparison operators

	test_unit_strings Unit strings test conversion to and from strings

	test_defined_units tests checking all the unit string maps for duplicates and conflicts and correct sizing

	test_google_units run some checks to ensure support for many units supported by google unit translation

	test_math run some tests on the extra mathematical operations found in units_math.hpp

	test_siunits run some tests of SI specific units and prefixes

CI systems

Azure

1. GCC 7.4 C++14 (Azure native Linux)
1. GCC 7.4 C++14 (Azure native Linux) with shared library build
1. AppleClang 11.0 (Xcode 11.3) C++17
1. AppleClang 11.0 (Xcode 11.3) C++11
1. MSVC 2019 C++17
1. MSVC 2019 C++11
1. MSVC 2022 C++20
1. GCC 4.8 C++11
1. GCC 7 C++11
1. GCC 7 C++14
1. GCC 8 C++17
1. GCC 9 C++17
1. GCC 12 C++20
1. Clang 3.4 C++11
1. Clang 3.5 C++11
1. Clang 8 C++14
1. Clang 9 C++17
1. Clang 14 C++20
1. Clang-tidy (both main library and tests)

Circle-CI

	Clang 14, Thread Sanitizer

	Clang 14, Address, undefined behavior sanitizer

	Clang 14, Memory Sanitizer

	Clang 8, Fuzzing library – run a couple of defined fuzzing tests from scratch to check for any anomalous situations. There are currently two fuzzers, the first test the units_from_string, and the second tests the measurement_from string. It first converts the fuzzing sequence, then if it is a valid sequence, converts it to a string, then converts that string back to a measurement or unit and makes sure the two measurements or units are identical. Any string sequence which doesn’t work is captured and tested.

GitHub Actions

1. CodeQl
1. Coverage (ubuntu 22.04 image C++11, C++14, C++17, C++20, 32 and 64 bit unit base)
1. CPPLINT
1. Quick CMAKE checks for all supported versions of cmake

Codecov

Try to maintain the library at 100% coverage.

Pre-commit

Runs clang-format and many other checks for repo cleanliness

Sources of Unit String Definitions

The string processing tests and strings supported came from a number of different sources.

Converter App

As a simple example and potentially useful tool we made the converter app. It is a command line application that can be built as part of the units library to convert units given on the command line.

$./unit_convert 10 m ft
32.8084

$./unit_convert ten meters per second mph
22.3694

$./unit_convert --full ten meters per second mph
ten meters per second = 22.3694 mph

$./unit_convert --simplified ten meters per second miles/hour
10 m/s = 22.3694 mph

$./unit_convert -s four hundred seventy-three kilograms per hour pounds/min
473 kg/hr = 17.3798 lb/min

$./unit_convert -s 22 british fathoms *
10 british fathoms = 18.288 m

basically there are two options –full,-f and –simplified,-s a measurement which will take an arbitrary number of strings and a final string as a unit to convert to. It outputs the conversion and if specified the surrounding measurement and units either simplified or in the original. Using * or <base> in place of the unit string will result in converting the measurement to base units.

$./unit_convert --help
application to perform a conversion of a value from one unit to another
Usage: unit_convert [OPTIONS] measure... convert

Positionals:
 measure [TEXT ...] ... REQUIRED
 measurement to convert .e.g '57.4 m', 'two thousand GB' '45.7*22.2 feet^3/s^2'
 convert TEXT REQUIRED the units to convert the measurement to

Options:
 -h,--help Print this help message and exit
 -f,--full specify that the output should include the measurement and units
 -s,--simplified simplify the units using the units library to_string functions and print the conversion string like full. This option will take precedence over --full
 --measurement [TEXT ...] ... REQUIRED
 measurement to convert .e.g '57.4 m', 'two thousand GB' '45.7*22.2 feet^3/s^2'
 --convert TEXT REQUIRED the units to convert the measurement to

Installation and Linking

The units library supports a header only mode and a compiled mode. One of the strengths of the library is the string processing which is only available in the compiled mode. Other additions from the compiled mode are the root operations on units and measurements. The header only mode includes the unit and measurement classes conversions between them and the definition library.

Header Only Use

The header only portion of the library can simply be copied and used. There are 3 headers units_decl.hpp declares the underlying classes. unit_defintions.hpp declares constants for many of the units, and units.hpp which is the primary public interface to units. If units.hpp is included in another file and the variable UNITS_HEADER_ONLY is defined then none of the functions that require the cpp files are defined. These header files can simply be included in your project and used with no additional building required. The UNITS_HEADER_ONLY definition is needed otherwise linking errors will result.

Compiled Usage

The second part is a few cpp files that can add some additional functionality. The primary additions from the cpp file are an ability to take roots of units and measurements and convert to and from strings. These files can be built as a standalone static library, a shared library or an object library, or included in the source code of whatever project want to use them. The code should build with an C++11 compiler. C++14 is recommended if possible to allow some additional function to be constexpr. Most of the library is tagged with constexpr so can be run at compile time to link units that are known at compile time. General Unit numerical conversions are not at compile time, so will have a run-time cost. A quick_convert function is available to do simple conversions. with a requirement that the units have the same base and not be an equation unit. The cpp code also includes some functions for commodities and will eventually have r20 and x12 conversions, though this is not complete yet.

Standalone Library

The units library can be built as a standalone library with either the static or shared library and installed like a typical package.

	Unit Library CMake Reference

Unit Library CMake Reference

There are a few CMake variables that control the build process, they can be altered to change how the units library is built and what exactly is built.

CMake variables

	BUILD_TESTING : Generate CMake Variable controlling whether to build the tests or not

	UNITS_ENABLE_TESTS : Does the same thing as BUILD_TESTING

	UNITS_BUILD_STATIC_LIBRARY: Controls whether a static library should be built or not

	UNITS_BUILD_SHARED_LIBRARY: Controls whether to build a shared library or not, only one or none of UNITS_BUILD_STATIC_LIBRARY and UNITS_BUILD_SHARED_LIBRARY can be enabled at one time.

	BUILD_SHARED_LIBS: Controls the defaults for the previous two options, overriding them takes precedence

	UNITS_BUILD_FUZZ_TARGETS: If set to ON, the library will try to compile the fuzzing targets for clang libFuzzer

	UNITS_BUILD_WEB_SERVER: If set to ON, build a webserver, This uses boost::beast and requires boost 1.70 or greater to build it also requires CMake 3.12 or greater

	UNITS_BUILD_CONVERTER_APP: enables building a simple command line converter application that can convert units from the command line

	UNITS_ENABLE_EXTRA_COMPILER_WARNINGS: Turn on bunch of extra compiler warnings, on by default

	UNITS_ENABLE_ERROR_ON_WARNINGS: Mostly useful in some testing contexts but will turn on Werror so any normal warnings generate an error.

	CMAKE_CXX_STANDARD: Compile with a particular C++ standard, valid values are 11, 14, 17, 20, and likely 23 though that isn’t broadly supported. Will set to 14 by default if not otherwise specified

	UNITS_BINARY_ONLY_INSTALL: Just install shared libraries and executables, no headers or static libs or packaging information

	UNITS_CLANG_TIDY: Enable the clang tidy tests as part of the build

	UNITS_CLANG_TIDY_OPTIONS: options that get passed to clang tidy when enabled

	UNITS_BASE_TYPE: Set to uint64_t for expanded base-unit power support. This increases the size of a unit by 4 Bytes.

	UNITS_DOMAIN: Specify a default domain to use for string conversions. Can be either a name from the domains namespace such as domains::surveying or one of ‘COOKING’, ‘ASTRONOMY’, ‘NUCLEAR’, ‘SURVEYING’, ‘USE_CUSTOMARY’, ‘CLIMATE’, or ‘UCUM’.

	UNITS_DEFAULT_MATCH_FLAGS: Specify an integer value for the default match flags to be used for conversion

	UNITS_DISABLE_NON_ENGLISH_UNITS: the library includes a number of non-english units that can be converted from strings, these can be disabled by setting UNITS_DISABLE_NON_ENGLISH_UNITS to ON or setting the definition in the C++ code.

	UNITS_NAMESPACE: The top level namespace of the library, defaults to units.
When compiling with C++17 (or higher), this can be set to, e.g., mynamespace::units to avoid name clashes with other libraries defining units.

	UNITS_INSTALL: This is set to ON normally but defaults to OFF if used as a subproject. This controls whether anything gets installed by the install target.

	UNITS_CMAKE_PROJECT_NAME: This is set to UNITS by default. If using this in a package manager or wish to rename the project this variable can be set to another name to change the name of the package. This will change the install path and cmake target names. For example setting -DUNITS_CMAKE_PROJECT_NAME=LLNL-UNITS will create cmake project llnl-units::units, and llnl-units::header_only and will install in a llnl-units directory with appropriate cmake files.

If compiling as part of a subproject then a few other options are useful

	UNITS_HEADER_ONLY: Only generate the header only target, sets UNITS_BUILD_STATIC_LIBRARY and UNITS_BUILD_SHARED_LIBRARY to OFF

	UNITS_INSTALL: enable the install instructions of the library

	UNITS_BUILD_OBJECT_LIBRARY: Generate an object library that can be used as part of other builds. Only one of UNITS_BUILD_SHARED_LIBRARY, UNITS_BUILD_STATIC_LIBRARY, or UNITS_BUILD_OBJECT_LIBRARY can be set to ON. If more than one are set, the shared library and object library settings take precedence over the static library.

	UNITS_LIBRARY_EXPORT_COMMAND: If desired the targets for the units library can be merged into an root project target list by modifying this variable. The use cases for this are rare, but if this is something you want to do this variable should be set to something like EXPORT rootProjectTargets. It defaults to “EXPORT unitsTargets”

CMake Targets

If you are using the library as a submodule or importing the package there are a couple targets that can be used depending on the build. NOTE: these can be changed using UNITS_CMAKE_PROJECT_NAME.

	units::units will be set to the library being built, either the shared, static, or object

	units::header_only is a target for the headers if UNITS_HEADER_ONLY CMake variable is set, then only this target is generated. This target is always created.

Example

As part of the HELICS [https://github.com/GMLC-TDC/HELICS] library the units library is used as a submodule it is included by the following code

so units cpp exports to the correct target export
set(UNITS_INSTALL OFF CACHE INTERNAL "")

if(NOT CMAKE_CXX_STANDARD)
 set(CMAKE_CXX_STANDARD 17) # Supported values are ``11``, ``14``, and ``17``.
endif()

set(UNITS_BUILD_OBJECT_LIBRARY OFF CACHE INTERNAL "")
set(UNITS_BUILD_STATIC_LIBRARY ON CACHE INTERNAL "")
set(UNITS_BUILD_SHARED_LIBRARY OFF CACHE INTERNAL "")
set(UNITS_BUILD_CONVERTER_APP OFF CACHE INTERNAL "")
set(UNITS_BUILD_WEBSERVER OFF CACHE INTERNAL "")
set(UNITS_CLANG_TIDY_OPTIONS "" CACHE INTERNAL "")
set(UNITS_BUILD_FUZZ_TARGETS OFF CACHE INTERNAL "")

add_subdirectory(
 "${PROJECT_SOURCE_DIR}/ThirdParty/units" "${PROJECT_BINARY_DIR}/ThirdParty/units"
)

set_target_properties(units PROPERTIES FOLDER Extern)

hide_variable(UNITS_HEADER_ONLY)
hide_variable(UNITS_BUILD_OBJECT_LIBRARY)
hide_variable(UNITS_NAMESPACE)

Then the target linked by

target_link_libraries(helics_common PUBLIC HELICS::utilities units::units)

User Guide

The Units library user guide is an in depth look at how to use the C++ library and its functionality, covering the basic types in the library and operations with them.
The guide covers the basic types and what operations are available on them, as well as a lot of details on how to use the library.

	Units

	Measurements

	Fixed Measurements

	Uncertain Measurements

	Units From Strings

	Units To Strings

	Math Operations

	Commodities

	User defined units

	Physical constants

	Defined Units

	Custom Units

	Custom Counting Units

	Unit Domains

	Conversion Flags

	Special Units

	Equation Units

Units

Basic Unit Types

There are two basic units classes
units and precise_units They both include a units_base see Unit base class for the details.
units has a single precision floating point multiplier and the units_base object. The precise_unit type uses a double precision floating point multiplier and includes commodity. The commodity is represented by a 32-bit code. See Commodities for more details on how that is used and defined.
The simplest way to start is by using one of the Defined Units All standard units are defined and many non-standard ones as well.

The Basics of units are the seven SI base units:

	the kilogram (kg), for mass.

	the second (s), for time.

	the kelvin (K), for temperature.

	the ampere (A), for electric current.

	the mole (mol), for the amount of a substance.

	the candela (cd), for luminous intensity.

	the meter (m), for distance.

In addition to the base SI units a couple additional bases are defined:

	radian(rad), for angular measurement

	Currency ($), for monetary values

	Count (cnt), for single object counting

Currency may seem like a unusual choice in units but numbers involving prices are encountered often enough in various disciplines that it is useful to include as part of a unit.
Technically count and radians are not units, they are representations of real things. A radian is a representation of rotation around a circle and is therefore distinct from a true unitless quantity even though there are no physical measurements associated with either.
And count and mole are theoretically equivalent though as a practical matter using moles for counts of things is a bit odd for example 1 GB of data is ~1.6605*10^-15 mol of data. So they are used in different context and don’t mix very often, the convert functions can convert between them if necessary.

The structure also defines some flags:

	per-unit, indicating per unit units

	i_flag, general flag and complex quantity

	e_flag, general unit discriminant

	equation, indicator that the unit is an equation unit.

Derived Units

A vast majority of physical units can be constructed using these bases, as well as many non-physical units. The entire structure for the units fits into 4 bytes to meet the design requirement for a compact type. This required a detailed evaluation of what physical units and combinations of them were in use in different scientific and commercial disciplines, The following list represents the range of allowed values chosen as the representation and those required by known and observed physical quantities.

	meter:[-8,+7] :normal range [-4,+4], intermediate ops [-6,+6]

	kilogram:[-4,+3] :normal range [-1,+1], intermediate ops [-2,+2]

	second:[-8,+7] :normal range [-4,+4], intermediate ops [-6,+6]

	ampere:[-4,+3] :normal range [-2,+2]

	kelvin:[-4,+3] :normal range [-4,+1]

	mole:[-2,+1] :normal range [-1,+1]

	candela:[-2,+1] :normal range [-1,+1]

	currency:[-2,+1] :normal range [-1,+1]

	count:[-2,+1] :normal range [-1,+1]

	radians:[-4,+3] :normal range [-2,+2]

For example the kilogram is rarely used in a squared context, so it has a normal range of between -1 and 1. But in intermediate mathematical operations it is squared on occasion, so we needed to be able represent that without overflow. Since without getting extraordinary complex we are limited to whole bit representation that infers a two’s complement notation of 2 bits is [-2,-1] for 3 bits [-4,+3], and for 4 bits [-8,+7]. So for kilograms 3 bits were used. The pu flag was determined to be required by the initial design considerations, and a flag value also turned out to be required by library design requirements. The equation and e_flag flags came a little later in the library development but turned out to be very useful in representing other kinds of units and discriminating between some units.

Basic operations

Some mathematical operations between units are supported. * and / with units produce a new unit.

auto new_unit=m/s;
auto another=new_unit*s;
//another == m

produces a new_unit equivalent to meters/second.

Comparison Operators

Units also support the comparison operators ==, and !=.The other comparison operators are not supported as it is somewhat undefined whether m > kg or many other comparison like that. The inequality is the inverse of equality, but the equality operator is an interesting subject. The unit component is relatively straightforward that part is the base units, if those are not equivalent then the answer is false. However there is a floating point component to the unit representing a multiplier. And floating point equality is treacherous. What is done is a rounding operation with a range. Basically units are assuming to have 6 decimal digits of precision, while precise_units have 13. So units will result in equality as long as the first X significant digits in the multiplier are equivalent and the unit_base is equal. this can’t be a specific range since the power of the multiplier is wide ranging this parsecs to picometers and all the base of meters.

Methods

Frequently units need to raised to some power. Units have a pow(int) method to accomplish this.

auto area_unit=m.pow(2);

The ^ will not work due to precedence rules in C++. If an operator for ‘^’ were defined an operation such as m/s^2 would produce meters squared per second squared which is probably not what is expected. Therefore best not to define the operator and use a function instead.

	Special Units

	Custom Units

	Equation Units

	Custom Counting Units

Special Units

There are a few defined units that are special in some fashion, and can be used as sentinel values or have special operations associated with them.

Default Unit

The defunit unit is allowed to be converted to any other unit. it is equivalent of per-unit*i_flag The main use case is in the convert functions and makes a good

Error Unit

auto error_unit=unit(detail::unit_data(nullptr));

Invalid Unit

An invalid unit is any unit that is either the error unit or has a NaN in the multiplier. This is the unit returned from a string conversion if the string does not describe a unit or measurement.

one

The default constructor for unit and precise_unit is empty unit data and 1.0 in the multiplier.

There are also precise versions of these values in the precise namespace

Custom Units

The units library defines 1023 special custom units. These are custom units intended to specify a specific type of unit which doesn’t have a normal unit base definition. The key idea behind the custom units is that they can be multiplied, divided by some normal powers of distance, mass, or time units and can be inverted

In strings these can be represented by “CXUN[X]” Where X is some number between 0 and 1023.

In C++ code they can be generated by

precise_unit new_cxc_unit=generate_custom_unit(code);

A set of checks and queries is available to check for custom_units.

	bool precise::custom::is_custom_unit(detail::unit_data udata);

	bool precise::custom::is_custom_unit_inverted(detail::unit_data udata);

	unsigned short precise::custom::custom_unit_number(detail::unit_data udata);

These checks will operate regardless of any m/kg/s unit combination or inverted units.

Custom units in Use

there are a few custom count units in use for specific clinical units Many of these units defy conversion to other known units but are used in pharmacological contexts
So there is no translation to other units and cannot be converted except to multiple of the same unit. There are often well established tests for these units but no good way to convert them to other units. Many of these units come from UCUM [https://unitsofmeasure.org/ucum.html].

	custom_unit(37): is hounsfield units [https://radiopaedia.org/articles/hounsfield-unit?lang=us] used it CT and radiology

	many units in UCUM are defined like [MPL’U] or [mclg’U] for this context they define some unit which doesn’t interact with other units in any known fashion. The notion used in the units library for string translations is that these define custom units. Rather than individually define the library takes a hash of the part of the unit coming before the ‘U]’ and generates a 10 bit hash. That 10 bit hash is used as the custom code for the units.

	custom_unit(77): is global warming potential related to climate operations

	custom_unit(78): is global temperature change potential

The other custom units are available for use or the one with known definition can be use if there is no domain conflicts.

The primary usage of these is for units that are procedurally defined and often used in the context of per mass or per volume or per time.

Implementation Details

Custom units use a combination of nearly all the different fields in the unit_base class, with the exception of count and radians. Based on the definitions used the custom units can be taken as per length/area/volume/mass/second with no issues. Some of the unit fields are used for defining an index and others are used purely for identification purposes.

Equation Units

The use of an equation flag in the unit_base defines a set of equation units. These are specific units where the relationship with other units is defined through an equation rather than a specific multiplier. There are 31 available equation units. Equation units use up the flags, count, and radian fields. All other units are left alone for defining the underlying units of the equation unit. So the equation specifier defines and equation rather than a specific unit.
equation types 0-15 deal with logarithms in some way, 16-31 are undefined or represent some common scale type units

to extract the equation type
- unsigned short precise::custom::eq_type(detail::unit_data udata);

Current equation definitions

	0: log10(x)

	1: nepers

	2: bels

	3: decibels

	4: -log10(x)

	5: -log10(x)/2.0

	6: -log10(x)/3.0

	7: -log10(x)/log10(50000)

	8: log2(x)

	9: ln(x)

	10: log10(x)

	11: 10*log10(x)

	12: 2*log10(x)

	13: 20*log10(x)

	14: log10(x)/log10(3)

	15: 0.5*ln(x)

	16: UNDEFINED

	17: UNDEFINED

	18: UNDEFINED

	19: UNDEFINED

	20: UNDEFINED

	21: UNDEFINED

	22: saffir-simpson hurricane wind scale

	23: Beaufort wind scale

	24: Fujita scale

	25: UNDEFINED

	26: UNDEFINED

	27: Prism diopter-100.0*tan(x)

	28: UNDEFINED

	29: Moment magnitude scale for earthquakes (richter)

	30: Energy magnitude scale for earthquakes

	31: UNDEFINED

The wind scales are not very accurate since they match up a slightly fuzzier notion to actual wind speed. There are general charts and the equations in use utilize a polynomial to approximate them to a continuous scale. So the units when used are generally convertible to a velocity unit such as m/s. There are currently 10 undefined equation units available if needed.

Equation Value conversions

The actual definitions of the equations are found in the unit::precise::equation namespace. Two functions are provided that convert values from equation values to units and vice versa.

	double convert_equnit_to_value(double val, detail::unit_data UT)

	double convert_value_to_equnit(double val, detail::unit_data UT)

also since some equation unit definitions depend on whether the actual units are power or magnitude values, there is a helper function to help determine this.
bool is_power_unit(detail::unit_data UT)
This applies in the neper, bel, and decibel units.

Custom Counting Units

The units library defines 16 special counting units. These are custom counting units intended to specify a specific type of event. The key idea behind the custom counting units is that they can be multiplied, divided by any powers of distance, mass, currency, or time units and can be inverted. The primary usage of these is for units that are procedurally defined and often used in the context of per mass or per volume or per time or per $.

In strings these can be represented by “CXCUN[X]” Where X is some number between 0 and 15.

In C++ code they can be generated by

precise_unit new_cxc_unit=generate_custom_count_unit(code);

A set of checks and queries is available to check for custom_count_units.

	bool precise::custom::is_custom_count_unit(detail::unit_data udata);

	bool precise::custom::is_custom_count_unit_inverted(detail::unit_data udata);

	unsigned short precise::custom::custom_count_unit_number(detail::unit_data udata);

These checks will operate regardless of any m/kg/s unit combination or inverted units. Underlying this is a set of codes and unit powers that would be extremely odd to encounter in normal use.

Custom count units in Use

there are a few custom count units in use for specific clinical units Many of these units defy conversion to other known units but are used in pharmacological contexts
So there is no translation to other units and cannot be converted except to multiple of the same unit. There are often well established tests for these units but no good way to convert them to other units. Many of these units come from UCUM [https://unitsofmeasure.org/ucum.html].

	custom_count_unit(0): is used for specific count units with commodities of some kind for string translation

	custom_count_unit(1): is Arbitrary Unit which has a clinical definition of some kind

	custom_count_unit(2): is International Unit [https://en.wikipedia.org/wiki/International_unit]

	custom_count_unit(3): is Index of reactivity [http://finto.fi/ucum/en/page/r394] which has a clinical definition

	custom_count_unit(4): is limit of flocculation [http://finto.fi/ucum/en/page/r404] which has a clinical definition

	custom_count_unit(5): is HPF [https://medical-dictionary.thefreedictionary.com/high-power+field] or High Power field which is related to microscopy

	6-15 are not currently in use.

The other custom units are available for use or the one with known definition can be use if there is no domain conflicts.

Implementation details

Custom count units utilizes the flags, candela, ampere, and Kelvin fields to make use of some non-physical unit definitions for a more useful purpose.

Measurements

The combination of a value and unit is known as a measurement. In the units library they are constructed by multiplying or dividing a unit by a numerical value.

measurement meas=10.0*m;
measurement meas2=5.3/s;

They can also be constructed via the constructor

measurement meas(10.0, kg);
measurement meas2(2.7, MW);

There are two kinds of measurements the regular measurement which uses a double precision floating point for the value and a precise_measurement which uses a double and a precise_unit.
In terms of size the measurement class is 16 Bytes and the precise_measurement is 24 bytes.

Precise measurements

A precise measurement includes a double for the value and a precise_unit to represent the unit. Most of the string conversion routines to measurement produce a precise_measurement.
the measurement_cast operation will convert a precise_measurement into a regular measurements.

precise_measurement mp(10.0, precise::kg);
measurement meas2=measurement_cast(mp);

Fixed Measurements

The primary difference between fixed_measurement and measurement is the idea that in a fixed_measurement the unit part is a constant. It does not change. Therefore any addition or subtraction operation will produce another measurement with the same units. It also allows for interaction and comparisons with numerical types since the unit is known. This is unlike measurements where comparison and addition and subtraction operations with numbers are not allowed. Otherwise the behavior and operations are identical between measurement and fixed_measurement and likewise between fixed_precise_measurement and precise_measurement

Relationship with numbers

Because the unit associated with a fixed measurement is fixed. It becomes legitimate to work with singular real valued numbers.

fixed_measurement dist(10, m);

if (dist>10.0) //this has meaning because the units of dist is known.
{
 //all other operators are defined with doubles
}

dist=dist+3.0; // dist is now 13 meters

dist-=2.0; // dist is now 11 meters

dist=5.0; // dist is now 5 meters

Interactions with measurement

Fixed measurements have an implicit conversion to Measurements, so all the methods that work with measurement work with fixed_measurements. The construction of a fixed_measurement from measurement is explicit. Likewise fixed_precise_measurement` have an implicit conversion to precise_measurement, so all the methods that work with precise_measurement work with fixed_precise_measurements. The construction of a fixed_measurement from measurement is explicit.

Uncertain Measurements

The units library supports a class of measurements including an uncertainty measurement.

For Example 3.0±0.2m would indicate a measurement of 3.0 meters with an uncertainty of 0.2 m.

All operations are supported
The propagation of uncertainty follow the root sum of squares methods outlined Here [http://lectureonline.cl.msu.edu/~mmp/labs/error/e2.htm].
There are methods available such as simple_divide, simple_product, simple_sum and simple_subtract that just sum the uncertainties. The method in use in the regular operators assume that the measurements used in the mathematical operation are independent, and should use the sum of squares methods. A more thorough explanation can be found at this location [http://web.mit.edu/fluids-modules/www/exper_techniques/2.Propagation_of_Uncertaint.pdf].

The structure of an uncertain measurement consists of a float for the measurement value and a float for the uncertainty, and unit for the unit of the measurement.

Constructors

There are a number of different constructors for an uncertain measurement aimed at specify the uncertainty and measurement in different ways.

	constexpr uncertain_measurement() default constructor with 0 values for the value and uncertainty and a one for the unit.

	constexpr uncertain_measurement(<float|double> val, <float|double> uncertainty, unit base) : specify the parameters with values.

	constexpr uncertain_measurement(<float|double> val, unit base): Just specify the value and unit, assume 0.0 uncertainty.

	constexpr uncertain_measurement(measurement val, float uncertainty) noexcept : construct from a measurement and uncertainty value.

	uncertain_measurement(measurement val, measurement uncertainty) noexcept: construct from a measurement value and uncertainty measurement. The uncertainty is converted to the same units as the value measurement.

Additional operators

Beyond the operations used in Measurements, there are some specific functions related to getting and setting the uncertainty.

	uncertain_measurement& uncertainty(<double|float> newUncertainty) : Will set the uncertainty value as a numerical value.

	uncertain_measurement& uncertainty(const measurement &newUncerrtainty): will set the uncertainty as a measurement in specific units.

	double uncertainty(): Will get the current numerical value of the uncertainty

	double uncertainty_as(units): will get the value of the uncertainty in specific units.

	float uncertainty_f(): will get the value of the uncertainty as a single precision floating point value.

	constexpr measurement uncertainty_measurement(): will return a measurement containing the uncertainty.

	double fractional_uncertainty(): will get the fractional uncertainty value. which is uncertainty/|value|.

String operations

The units library has some functions to extract an uncertain_measurement from a string
- uncertain_measurement_from_string(const std::string &ustring, std::uint64_t match_flags=0)

The from string operation searches for an uncertainty marker then splits the string into two parts. It then uses the measurement from string operation on both halves of the string and forms an uncertain measurement from them depending on whether both halves have units and or values. Allowed uncertainty marker strings include [“+/-”, “±”, “±”, “+-”, “<u>+</u>”, “±”, “±”, ” \pm “]. These possibilities include unicode and ascii values and some sequences used in latex and html.

For Example all the following string will produce the same uncertain_measurement

	“3.1±0.3 m/s”

	“3.1 +/- 0.3 m/s”

	“3.1 ± 0.3 m/s”

	“3.1 m/s ±0.3 m/s”

	“3.1 m/s ±0.3”

	“3.1 meters per second ±0.3 m/s”

	“3.1 m/s +- 0.3*60 meters per minute”

	“3.1(3) m/s”

The last form is known as concise notation [https://physics.nist.gov/cgi-bin/cuu/Info/Constants/definitions.html].
The match flags are the same as would be used for converting Measurements

Units From Strings

The units library contains a few functions to generate various types from string representations

	precise_unit unit_from_string(const std::string& ustring, std::uint32_t flags=0) : will generate a precise_unit based on the data in the string

	unit unit_cast_from_string(const std::string& ustring, std::uint32_t flags=0): will generate a unit based on the data in the string

	precise_measurement measurement_from_string(const std::string& ustring, std::uint32_t flags=0): will generate a precise_measurement from the data in the string

	measurement measurement_cast_from_string(const std::string& ustring, std::uint32_t flags=0): will generate a measurement from the data in the string

	uncertain_measurement uncertain_measurement_from_string(const std::string& ustring, std::uint32_t flags=0): will generate an uncertain_measurement from the data in the string

The general form is to take a string and optionally a flag object. See Conversion Flags for a detailed description of the flags. Generally it is fine to leave off the flag argument.

Unit Strings

in general the unit string conversion is intended to be as flexible as possible. just about any unit normally written can be converted.

For example

	“m/s”

	“meter/second”

	“meter/s”

	“metre/s”

	“meters/s”

	“meters per second”

	“metres per second”

	“m per sec”

	“meterpersecond”

	“METERS/s”

	“m*s^-1”

	“meters*seconds^(-1)”

	“(second/meter)^(-1)”

	“100 centimeters / 1000 ms”

Will all produce the unit of meters per second. As a note there are quite a few more units that can be converted from strings than are listed in the Defined Units.
Numbers are supported and become part of the unit. “99 feet” would create a new unit with a definition of 99 ft. The multiplier stored would include the conversion from meters to feet*99. This allows for arbitrary unit definitions.
The + operator also works if the units on both sides have the same base for example 3 ft + 2 in would be the equivalent of 38 inches. If the units do not have the same base + is interpreted as a multiplication.

Measurement strings

The conversion from a string to measurement looks for a leading number before the unit. The “99 feet” in the previous example would then get a measurement value of 99 and the unit would be feet. The measurement from string function also can interpret written numbers such as “three thousand four hundred and twenty-seven miles” This should get correctly read as 3427 miles.

The conversion function also handles a few cases where the unit symbol is written before the value such as currency $27.92 would be a value of 27.92 with the currency unit.

Uncertain Measurements

Similarly to Measurement strings, uncertain measurements can also be converted from strings see Uncertain Measurements for additional details on the formats supported.

Units To Strings

All the class in the units library can be given as an argument to a to_string function. This function converts the units or value into a std::string that is representative of the unit or measurement. In all cases the primary aim of the to_string is to generate a string that the corresponding *_from_string function will recognize and convert back to the original unit. The secondary aim is to generate string that is human readable in standard notation. While this is achieved for many common units there is some work left to do to make it better.

For example

measurement density=10.0*kg/m.pow(3);
measurement meas2=2.7*puMW;

auto str1=to_string(density);
auto str2=to_string(meas2);

// from google tests
EXPECT_EQ(str1, "10 kg/m^3");
EXPECT_EQ(str2, "2.7 puMW");

uncertain_measurement um1(10.0, 0.4, m);
auto str = to_string(um1);
EXPECT_EQ(str, "10+/-0.4 m");

Uncertain measurement string conversions make some attempt to honor significant digits based on the uncertainty.

Advanced Usage

The to_string function also takes a second argument which is a std::uint64_t match_flags in all cases this default to 0, it is currently unused though will be used in the future to allow some fine tuning of the output in specific cases. In the near future a flag to allow utf 8 output strings will convert certain units to more common utf8 symbols such as unit Powers and degree symbols, and a few others. The output string would default to ascii only characters.

Stream Operators

Output stream operators are NOT included in the library. It was debatable to include them or not but there would be a lot of additional overloads that would add quite a bit of code to the header files, that in most cases is not necessary so the decision was made to exclude them. The to_string operations provide most of the capabilities with some additional flexibility, and if needed for a particular use case can be added to the user code in a simple fashion

namespace units{
 std::ostream& operator<<(std::ostream& os, const precise_unit& u)
 {
 os << to_string(u);
 return os;
 }
} // namespace units

Any of the types in the units library with a to_string operation can be handled in the same way. Depending on the compiler, placing the operator in the namespace may or may not be necessary.

Underlying Conversion Map Access

The underlying conversion maps may be accessed by users if desired.
To access them a compile time definition needs to be added to the build ENABLE_UNIT_MAP_ACCESS

#ifdef ENABLE_UNIT_MAP_ACCESS
namespace detail {
 const std::unordered_map<std::string, precise_unit>& getUnitStringMap();
 const std::unordered_map<unit, const char*>& getUnitNameMap();
}
#endif

These may be useful for building a GUI or smart lookup or some other operations. getUnitStringMap() returns a map of known unit strings, and getUnitNameMap() is a mapping of common units back to strings as a building block for the to_string operation.

Math Operations

Additional mathematical operations on measurements are available in the unit_math.hpp header these are header only so no additional compilation is required. The intention of this header is to match operations from the cmath header available in the standard library. These are all template functions which will work for any measurement type.

Type traits

The header includes a few type traits used in the header file and potentially useful elsewhere including

	is_unit : true if the type is a unit (unit or precise_unit)

	is_measurement : true if the type is one of the defined measurement types

	is_precise_measurement : true if the type is one of the defined precise measurement type

Rounding and Truncation

These operations will effect only the value part of the measurement

	round

	trunc

	ceil

	floor

Trigonometric functions

Trigonometric operations will operate only if the measurement is convertible to radians

	sin

	cos

	tan

Multiplies and divides

Division and multiplication operators for measurements that have support for per_unit measurement

	multiplies : works like * except when one of the measurements is per_unit and they have the same unit base, then they remove the per unit

	divides : works like / except if both measurements have the same base then the result has a per_unit unit

See Strain for examples on usage

Others

Other common mathematical expressions found in <cmath>

	fmod : return the floating point modulus of a division operation as long as division is a valid operation

	hypot : works for two and three measurements or floating point values as long as addition is a valid operation.

	cbrt : works similarly to the sqrt operation

Commodities

the precise_unit class can represent commodities as well as units. The commodity is represented by a 32 bit unsigned number that codes a variety of commodities.
The actual representation is still undergoing some change so expect this to change going forward. See Commodity Details for more details.

Methods

There are a few available methods for dealing with commodity codes and string translation

	std::uint32_t getCommodity(std::string comm) - will get a commodity from a string.

	std::string getCommodityName(std::uint32_t commodity) - will translate a commodity code into a string

Custom Commodities

	void addCustomCommodity(std::string comm, std::uint32_t code) - Add a custom commodity code using a string and code

	void clearCustomCommodities() - clear all current user defined commodities

	void disableCustomCommodities() - Turn off the use of custom commodities

	void enableCustomCommodities() - Turn on the ability to add and check custom commodities for later access

Commodities to names

The getCommodityName methods has 4 stages and will return from any successful stage.

	Check custom commodities if allowed

	Check standardized commodity names

	Check for special codes for name storage (short names <=5 ascii lower case characters are stored directly in the code)

	generate string “CXCOMM[<code>]”

String To Commodities

The getCommodity method works nearly the opposite of getCommodityName.

	Check custom commodities if allowed

	Check standardized commodity codes

	Check for string “CXCOMM[<code>]”

	Check for special codes for name storage (short names <=5 ascii lower case characters are stored directly in the code)

	Generate a hash code of the string and if allowed store it as a custom commodity

Defined Commodities

The list of commodities is still in development. Generally `traded commodities<https://en.wikipedia.org/wiki/List_of_traded_commodities>`_ are available as well as a few others that are used in clinical definitions or other uses as part of unit definition standards. In the future this list will more generally expand to match international trade tables. See `commodities.cpp<https://github.com/LLNL/units/blob/master/units/commodities.cpp>`_ for details on the exact list.

User defined units

The units library has support for user defined units and Commodities. These interact with the *_from_string and to_string operations to allow custom conversions and definitions.

Defining a custom unit

The basic function for adding a custom unit is addUserDefinedUnit(string name, precise_unit un)

For example from a test in the library

precise_unit idgit(4.754, mol/m.pow(2));
addUserDefinedUnit("idgit", idgit);

auto ipm=unit_from_string("idgit/min");
EXPECT_EQ(ipm, idgit / min);

auto str = to_string(ipm);
EXPECT_EQ(str, "idgit/min");

str = to_string(ipm.inv());
EXPECT_EQ(str, "min/idgit");

Basically user defined units can interact with the string conversion functions just like any other unit defined in the library. A user defined unit gets priority when converting to a string as well including when squared or cubed as part of a compound unit. For example from the test cases:

addUserDefinedUnit("angstrom", units::precise::distance::angstrom);

auto str = to_string(units::unit_from_string("us / angstrom^2"));
EXPECT_EQ(str, "us/angstrom^2");
str = to_string(units::unit_from_string("us / angstrom"));
EXPECT_EQ(str, "us/angstrom");

If only an ability to interpret strings is needed the addUserDefinedInputUnit can be used

precise_unit idgit(4.754, mol/m.pow(2));
addUserDefinedInputUnit("idgit", idgit);

auto ipm = unit_from_string("idgit/min");
EXPECT_EQ(ipm, idgit / min);

auto str = to_string(ipm);
EXPECT_EQ(str.find("idgit"), std::string::npos);
EXPECT_NE(str.find("kat") , std::string::npos);

If only output strings are needed the addUserDefinedOutputUnit can be used

precise_unit idgit(4.754, mol / m.pow(2));
addUserDefinedOutputUnit("idgit", idgit);

auto ipm = unit_from_string("idgit/min");
//this is not able to be read since idgit is undefined as an input
EXPECT_NE(ipm, idgit / min);

auto str = to_string(idgit/min);
/** output only should make this work*/
EXPECT_EQ(str,"idgit/min");

The output unit can be used when the interpreter works fine but the string output doesn’t do what you want it to do.

A unit can be removed from the user defined unit set via removeUserDefinedUnit

 auto ipm=unit_from_string("idgit/min");
EXPECT_EQ(ipm, idgit / min);

auto str = to_string(ipm);
EXPECT_EQ(str, "idgit/min");

str = to_string(ipm.inv());
EXPECT_EQ(str, "min/idgit");

removeUserDefinedUnit("idgit");
EXPECT_FALSE(is_valid(unit_from_string("idgit/min")));

The removal also works for user defined units specified via addUserDefinedInputUnit or addUserDefinedOutputUnit

Input File

Sometimes it is useful to have a larger library of units in this case the std::string definedUnitsFromFile(const std::string& filename) can be used to load a number of units at once.

The file format is quite simple.
at the beginning of a line indicates a comment
other wise

comment
meeter == meter
meh == meeter per hour
=> indicates input only unit
 mehmeh => meh/s
<= indicates output only unit
 hemhem => s/meh

or

comment
yodles=73 counts

comment
"yeedles", 19 yodles

yimdles; dozen yeedles

or

test the quotes for inclusion
"bl==p"=18.7 cups

test single quotes for inclusion
'y,,p',9 tons

ignore just one quote
'np==14 kg

escaped quotes
"j\"\""= 13.5 W

escaped quotes
'q""'= 15.5 W

The basic rule is that one of [<=,;] will separate a definition name from a unit definition. If the next character after the separator is an ‘=’ it is ignored. If it is a ‘>’ it implies input only definition. If the separator is an ‘<=’ then it is output only. Otherwise it calls addUserDefinedUnit for each definition. The function is declared noexcept and will return a string with each error separated by a newline. So if the result string is empty() there were no errors.

Other Library Operations

	clearUserDefinedUnits() will erase all previously defined units

	disableUserDefinedUnits() will disable the use of user defined units

	enableUserDefinedUnits() will enable their use if they had been disabled, they are enabled by default.

Notes on units and threads

The user defined units usage flag is an atomic variable but the modification of the user defined library are not thread safe, so if threads are needed make all the changes in one thread before using it in other threads, or protect the calls with a separate mutex. The disable and enable functions trigger an atomic variable that enables the use of user defined units in the string translation functions. disableUserDefinedUnits() also turns off the ability to specify new user defined units but does not erase those already defined.

Physical constants

The units library comes with a number of physical constants with appropriate units defined.
All the physical constants are specified as Precise measurements and in the namespace units::constants
In general the most recent definition was chosen which includes the 2019 redefinition of some SI units this matches with the rest of the library and the defined units.
Inspiration for the different constants was taken from wikipedia [https://en.wikipedia.org/wiki/List_of_physical_constants] and NIST [https://physics.nist.gov/cuu/Constants/index.html].
Defined constants. The 2019 redefinition [https://www.nist.gov/si-redefinition/meet-constants] of the SI system was used where applicable. All common constants [https://physics.nist.gov/cgi-bin/cuu/Category?view=html&Frequently+used+constants.x=87&Frequently+used+constants.y=18] listed from NIST are included

Defined constants

Values are taken from NIST 2018 CODATA [https://physics.nist.gov/cuu/Constants/Table/allascii.txt] unless otherwise noted

	Standard gravity - g0

	Gravitational constant - G

	Speed of light - c

	Elementary Charge (2019 redefinition) - e

	hyperfine structure transition frequency of the caesium-133 atom - fCs

	fine structure constant - alpha

	Planck constant (2019 redefinition) - h

	Reduced Planck constant (2019 redefinition) - hbar

	Boltzman constant (2019 redefinition) - k

	Avogadros constant (2019 redefinition) - Na

	Luminous efficiency - kcd

	Permittivity of free space - eps0

	Permeability of free space - mu0

	Gas Constant - R

	Stephan Boltzmann constant -s

	Hubble constant 69.8 km/s/Mpc - H0

	Mass of an electron - me

	Mass of a proton - mp

	Bohr Radius - a0

	Faraday’s constant - F

	Atomic mass constant - mu

	Conductance quantum - G0

	Josephson constant - Kj

	Magnetic flux quantum - phi0

	von Kiltzing constant - Rk

	Rydberg constant - Rinf

Planck Units

These units are found in the units::constants::planck namespace and include
length, mass, time, charge, and temperature.

Atomic units

These physical constants are values related to an electron or atomic measurements [https://www.bipm.org/en/publications/si-brochure/table7.html]
They include length, mass, time, charge- same as e above, energy, and action. The atomic constants are defined in the units::constants::atomic namespace.

Numbers

There are a few numbers that are used in the library and include definitions in the units::constants namespace. They are represented as doubles and are defined as constexpr

	pi (3.14159265358979323846)

	tau (2.0*pi)

	invalid_conversion (signaling NaN)

	infinity

	standard_gravity the numerical value of g0, earth standard gravity in m/s/sec

	speed_of_light The numerical value of the speed of light in m/s

The last two are used in several other units and some conversions so it seemed better to just define the numerical value and use that rather than use the same number in several places.

Planetary masses

The masses of some of the solar system bodies are included in units::constants::Planetary::mass

	solar

	earth

	moon

	jupiter

	mars

From Strings

All constants listed here are available for conversion from strings by wrapping in brackets For example the luminous efficiency would be converted to a unit by using [kcd] The planck constants are available as [planck::XXXXX] or planckXXXXXX and the atomic constants are available as `[atomic::XXXX]

Uncertainties

Certain physical constants have uncertainties associated with them and have an additional uncertain_measurement associated with them see uncertain_measurments.
These can be found in the units::constants::uncertain namespace and include:

	Gravitational constant - G

	Permittivity of free space - eps0

	Permeability of free space - u0

	Hubble constant 69.8 km/s/Mpc - H0

	Mass of an electron - me

	Mass of a proton - mp

	Atomic mass constant - mu

	mass of nuetron - mn

	Rydberg constant - Rinf

	fine structure constant - alpha

NOTE: A few of the uncertain constants have more precision than supported in uncertain_measurments but were included for completeness

Defined Units

The units library comes with two sets of units predefined. They are all located in src/units/unit_definitions.hpp [https://github.com/LLNL/units/blob/master/units/unit_definitions.hpp].
The definitions come in two flavors a precise_unit and a regular unit. All the precise units are defined in the namespace units::precise

All the units are defined as a constexpr values. The choice of which units to define is somewhat arbitrary and guided by the authors experience and the origins of the library in power systems and electrical engineering in the US.
Units that the author has actually encountered in work or life are included and in cases where there might be conflicts depending on the location preference was given to the US customary definition, though international systems take priority.

Listing of Units

The most common units are defined in the namespace units::precise and others are defined in subnamespaces.

Base Units

Most base units have two definitions that are equivalent

	meter, m

	kilogram, kg

	second, s

	Ampere, A

	Kelvin, K

	mol

	candela, cd

	currency

	count

	pu

	iflag

	eflag

	radian, rad

Specialized units

Some specialized units are defined for use in conversion applications or for making handling string conversions a little easier

	defunit - special unit that signifies conversion to any other units is possible

	invalid - special unit that conversion has failed

	error - an error unit

Numerical Units

Sometimes it is useful to have pure numerical units, often for multiplication with other units such as hundred*kg or something like that which becomes a single unit with 100 kg.

	one

	ten

	hundred

	percent (0.01)

	infinite

	nan

Also included in this category are SI prefixes [https://physics.nist.gov/cuu/Units/prefixes.html]
deci, centi,milli, micro, nano, pico, femto, atto, zepto, yocto, ronto, quecto, deka, hecto, kilo, mega, giga, tera, peta, exa, hecto, zetta, yotta,rotta, quetta.

and SI data prefixes
kibi, mebi, gibi, tebi, pebi, exbi, zebi, yobi

Derived SI Units

There are many units that used in combination with the SI system that are derived from the base units

	hertz, Hz

	volt, V

	Pa (pascal, on some systems this is defined as something else so the definition(pascal) is skipped)

	newton, N

	joule, J

	watt, W

	coulomb, C

	farad, F

	siemens, S

	weber, Wb

	tesla, T

	henry, H

	lumen, lm

	lux, lx

	becquerel, Bq

	gray, Gy

	sievert, Sv

	katal, kat

	sr

Extra SI related units

A few units that are not officially part of the SI but are accepted [https://physics.nist.gov/cuu/Units/outside.html] for use with the SI system, along with a few other SI units with prefixes that are commonly used.

	mg

	g

	mL

	L

	nm

	mm

	km

	cm

	bar

Centimeter-Gram-Second system

The CGS [https://en.wikipedia.org/wiki/Centimetre%E2%80%93gram%E2%80%93second_system_of_units] system is a variant on the metric system. Units from the CGS system are included under the namespace units::precise::cgs.

	eng

	dyn

	barye

	gal

	poise

	stokes

	kayser

	oersted

	gauss

	debye

	maxwell

	biot

	gilbert

	stilb

	lambert

	phot

	curie

	roentgen

	REM

	RAD

	emu

	langley

	unitpole

	statC_charge

	statC_flux

	abOhm

	abFarad

	abHenry

	abVolt

	statV

	statT

	statHenry

	statOhm

	statFarad

Conventional Electrical Units

defined in namespace units::precise::conventional

	volt90

	ampere90

	watt90

	henry90

	coulomb90

	farad90

	ohm90

Meter Gram Force System

defined in namespace units::precise::gm

	pond

	hyl

	at

	poncelet

	PS

Meter Tonne Second system

Defined in namespace units::precise::MTS

	sthene

	pieze

	thermie

Additional Time units

Defined in namespace units::precise::time, units marked with * are also defined in the units::precise.

	min*

	ms*

	ns*

	hr*

	h*

	day*

	week

	yr* (8760 hr)

	fortnight

	sday - sidereal day

	syr - sidereal year

	at - mean tropical year

	aj - mean julian year

	ag - mean gregorian year

	year - aliased to median calendar year (365 days) which is the standard for SI

	mos - synodal (lunar) month

	moj - mean julian month

	mog - mean gregorian month

International customary Units

These are traditional units that have some level of international definition
Defined in namespace units::precise::i

	grain

	point

	pica

	inch

	foot

	yard

	mile

	league

	hand

	cord

	board_foot

	mil

	circ_mil

A few units have short symbols defined in unit::precise
in, ft, yd, mile. These alias to the international definition.

Avoirdupois units

Avoirdupois units are another common international standard of units for weight and volumes. The units are defined in units::precise::av

	dram

	ounce

	pound

	hundredweight

	longhundredweight

	ton

	longton

	stone

	lbf

	ozf

	slug

	poundal

A few common units have symbols defined in units::precise lb, ton, oz, lbf and these alias to the Avoirdupois equivalent.

Troy Units

Most commonly for precious metals a few units are defined in units::precise::troy, with a basis in the international grain.

	pennyweight

	oz

	pound

United States Customary Units

These are traditional units defined in the United States, for survey or common usage.
Defined in unit::precise::us.

	foot

	inch

	mil

	yard

	rod

	chain

	link

	furlong

	mile

	league

	acre*

	homestead

	section

	township

	minim

	dram

	floz

	tbsp

	tsp

	pinch

	dash

	shot

	gill

	cup

	pint

	quart

	gallon

	flbarrel - liquid barrel

	barrel

	hogshead

	cord

	fifth

A few US customary units are defined in specific namespaces to distinguish them from other forms
US customary dry measurements are defined in units::precise::us::dry

	pint

	quart

	gallon

	peck

	bushel

	barrel

	sack

	strike

Some grain measures used in markets and commodities are defined in units::precise::us::grain.
When commodities are a little more developed this will be defined with appropriate commodity included.

	bushel_corn

	bushel_wheat

	bushel_barley

	bushel_oats

Some survey units are defined in units::precise::us::engineers to distinguish them from others

	chain

	link

The unit gal (gallon) is also defined in units::precise since that is pretty common to use.

FDA and metric measures

The food and drug administration has defined some customary units in metric terms for use in medicine. These are defined in units::precise::metric
Also included are some other customary units that have a metric definition.

	tbsp

	tsp

	floz

	cup

	cup_uslegal

	carat

Canadian Units

Some Canadian definitions of customary units defined in units::precise::canada

	tbsp

	tsp

	cup

	cup_trad

	gallon

	grain::bushel_oats

Australia Units

Traditional Australian units defined in units::precise::australia

	tbsp

	tsp

	cup

Imperial or British Units

Traditional british or imperial units, defined in units::precise::imp.

	inch

	foot

	thou

	barleycorn

	rod

	chain

	link

	pace

	yard

	furlong

	league

	mile

	nautical_mile

	knot

	acre

	perch

	rood

	gallon

	quart

	pint

	gill

	cup

	floz

	tbsp

	tsp

	barrel

	peck

	bushel

	dram

	minim

	drachm

	stone

	hundredweight

	ton

	slug

Apothecaries System

Used in pharmaceutical contexts the apothecaries system of units is defined in units::precise::apothecaries.

	floz (same as imperial version)

	minim

	scruple

	drachm

	ounce

	pound

	pint

	gallon

	metric_ounce

Nautical Units

Some units defined in context of marine travel defined in units::precise::nautical

	fathom

	cable

	mile

	knot

	league

Japanese traditional Units

Some traditional Japanese units are included for historical interest in units::precise::japan

	shaku

	sun

	ken

	tsubo

	sho

	kan

	go

	cup

Chinese Traditional Units

Some traditional Chinese units are included for historical interest in units::precise::chinese

	jin

	liang

	qian

	li

	cun

	chi

	zhang

Typographic units

Units used in typesetting and typography are included in units::precise::typographic
Subsets of the units depending on the location are in subnamespaces

units::precise::typographic::american

	line

	point

	pica

	twip

units::precise::typographic::printers

	point

	pica

units::precise::typographic::french

	point

	ligne

	pouce

	didot

	cicero

	pied

	toise

units::precise::typographic::metric

	point

	quart

units::precise::typographic::IN

l’Imprimerie nationale

	point

	pica

units::precise::typographic::tex

	point

	pica

units::precise::typographic::postscript

	point

	pica

units::precise::typographic::dtp

This is the modern standard or as close to such a thing as exists

	point

	pica

	twip

	line

units::precise::typographic

Values taken from dtp namespace

	point

	pica

Distance Units

Some additional distance units are defined in units::precise::distance

	ly

	au

	au_old

	angstrom

	parsec

	smoot

	cubit

	longcubit

	arpent_us

	arpent_fr

	xu

Area Units

Some additional units defining an area units::precise::area

	are

	hectare

	barn

	arpent

Mass Units

Some additional units defining a mass units::precise::mass

	quintal

	ton_assay

	longton_assay

	Da

	u

	tonne

t is included in the units::precise namespace as a metric tonne

Volume Units

Some additional units defining a volume units::precise::volume

	stere

	acre_foot

	drum

Angle Units

A few units defining angles are defined in units::precise::angle.

	deg*

	gon

	grad

	arcmin

	arcsec

	brad - binary radian (1/256 of a circle)

Directional Units

A few cardinal directional units are defined in units::precise::direction, these make use of the i_flag and a numerical value

	east

	north

	south

	west

Temperature Units

A few units related to temperature systems, defined in units::precise::temperature

	celsius, degC*

	fahrenheit, degF*

	rankine, degR

	reaumur

Pressure Units

Some units related to pressure are defined in units::precise::pressure

	psi

	inHg

	mmHg

	torr

	inH2O

	mmH2O

	atm - standard atmosphere

	att - technical atmosphere

Power Units

Some units related to power are defined in units::precise::power

	hpE - electric Horsepower

	hpI - international horsepower

	hpS - steam horesepower

	hpM - mechanical horsepower

the unit hp is aliased in the units::precise namespace to power::hpI

Energy Units

Some units related to energy are defined in units::precise::energy

	kWh

	MWh

	eV

	kcal

	cal_4 - calorie at 4 deg C

	cal_15 - calorie at 15 deg C

	cal_28 - calorie at 28 deg C

	cal_mean - mean calorie

	cal_it - international table calorie

	cal_th - thermochemical calorie

	btu_th - thermochemical BTU

	btu_39 - BTU at 39 deg C

	btu_59 - BTU at 59 deg C

	btu_60 - BTU at 60 deg C

	btu_mean - mean BTU

	btu_it - international table BTU

	btu_iso - rounded btu_it

	quad

	tonc - cooling ton

	therm_us

	therm_br

	therm_ec

	EER - energy efficiency ratio

	SG - specific gravity

	ton_tnt

	boe - barrel of oil equivalent

	foeb

	hartree

	tonhour

	tce - ton of coal equivalent

	lge - liter of gasoline equivalent

in the units::precise namespace

	btu = energy::but_it

	cal = energy::cal_th

	kWh = energy::kWh

	MWh = energy::MWh

Power system Units

Some additional units related to power systems and electrical engineering
in units::precise::electrical namespace

	MW

	VAR - W*i_flag

	MVAR

	kW

	kVAR

	mW

	puMW

	puV

	puHz

	MJ

	puOhm

	puA

	kV

	mV

	mA

Equation type Units

Equation units are explained more thoroughly in Equation Units Some of the specific common equation units are defined in the namespace units::precise::log.

	neper

	logE - natural logarithm

	neperA - neper of amplitude unit

	neperP - neper of a power unit

	logbase10

	bel

	belP - bel of a power based unit

	dBP

	belA - bel of an amplitude based unit

	dBA - dB of an amplitude based unit

	logbase2

	dB

	neglog10

	neglog100

	neglog1000

	neglog50000

	B_SPL

	B_V

	B_mV

	B_uV

	B_10nV

	B_W

	B_kW

	dB_SPL

	dB_V

	dB_mV

	dB_uV

	dB_10nV

	dB_W

	dB_kW

	dB_Z - radar reflectivity

	BZ - radar reflectivity

Textile related Units

Units related to the textile industry in namespace units::precise::textile.

	tex

	denier

	span

	finger

	nail

Clinical Units

Units related to clinical medicine in namespace units::precise::clinical.

	pru

	woodu

	diopter

	prism_diopter

	mesh

	charriere

	drop

	met

	hounsfield

Laboratory Units

Units used in laboratory settings in namespace units::precise::laboratory.

	svedberg

	HPF

	LPF

	enzyme_unit

	IU

	arbU - arbitrary unit

	IR - index of reactivity

	Lf - Limit of flocculation

	PFU

	pH

	molarity

	molality

Data Units

Units related to computer data and storage in units::precise::data

	bit*

	nibble

	byte

	kB*

	MB*

	GB*

	kiB

	MiB

	GiB

	bit_s - Shannon bit for information theory

	shannon

	hartley

	ban

	dit

	deciban

	nat

	trit

	digits

B is defined as byte in units::precise

Computation units

Units related to computation units::precise::computation.

	flop

	flops

	mips

Special units

Some special units that were not otherwise characterized in namespace units::precise::special.

	ASD - amplitude spectral density

	moment_magnitude - moment magnitude for earthquake scales (related to richter scale)

	moment_energy

	sshws - saffir simpson hurricane wind scale

	beaufort - Beaufort wind scale

	fujita - Fujita scale for tornados

	mach - mach number(multiplier of the speed of sound)

	rootHertz - square root of Hertz, this is a special handling unit that triggers some specific behavior to handle it.

	rootMeter - square root of meter, this is a special handling unit that triggers some specific behavior to handle it.

Other Units

General purpose other units not otherwise categorical in namespace units::precise::other

	ppm - part per million

	ppb - part per billion

	candle

	faraday

	rpm* - revolution per minute

	CFM - cubic feet per minute

	MegaBuck - $1,000,000

	GigaBuck - $1,000,000,000

Climate Units

Units related to climate in namespace units::precise::climate

	gwp - global warming potential

	gtp - global temperature potential

Speed Units

mph and mps are defined in units::precise since they are pretty common

Units in the units namespace

Regular units are defined in the units namespace. The general rule is that any units with a definition directly in units::precise has an analog nonprecise unit in the units namespace.
One addition is that any unit defined in precise::electrical also is defined in units this has to do with the origins of the library in power systems.

Custom Units

The units library defines 1023 special custom units. These are custom units intended to specify a specific type of unit which doesn’t have a normal unit base definition. The key idea behind the custom units is that they can be multiplied, divided by some normal powers of distance, mass, or time units and can be inverted

In strings these can be represented by “CXUN[X]” Where X is some number between 0 and 1023.

In C++ code they can be generated by

precise_unit new_cxc_unit=generate_custom_unit(code);

A set of checks and queries is available to check for custom_units.

	bool precise::custom::is_custom_unit(detail::unit_data udata);

	bool precise::custom::is_custom_unit_inverted(detail::unit_data udata);

	unsigned short precise::custom::custom_unit_number(detail::unit_data udata);

These checks will operate regardless of any m/kg/s unit combination or inverted units.

Custom units in Use

there are a few custom count units in use for specific clinical units Many of these units defy conversion to other known units but are used in pharmacological contexts
So there is no translation to other units and cannot be converted except to multiple of the same unit. There are often well established tests for these units but no good way to convert them to other units. Many of these units come from UCUM [https://unitsofmeasure.org/ucum.html].

	custom_unit(37): is hounsfield units [https://radiopaedia.org/articles/hounsfield-unit?lang=us] used it CT and radiology

	many units in UCUM are defined like [MPL’U] or [mclg’U] for this context they define some unit which doesn’t interact with other units in any known fashion. The notion used in the units library for string translations is that these define custom units. Rather than individually define the library takes a hash of the part of the unit coming before the ‘U]’ and generates a 10 bit hash. That 10 bit hash is used as the custom code for the units.

	custom_unit(77): is global warming potential related to climate operations

	custom_unit(78): is global temperature change potential

The other custom units are available for use or the one with known definition can be use if there is no domain conflicts.

The primary usage of these is for units that are procedurally defined and often used in the context of per mass or per volume or per time.

Implementation Details

Custom units use a combination of nearly all the different fields in the unit_base class, with the exception of count and radians. Based on the definitions used the custom units can be taken as per length/area/volume/mass/second with no issues. Some of the unit fields are used for defining an index and others are used purely for identification purposes.

Custom Counting Units

The units library defines 16 special counting units. These are custom counting units intended to specify a specific type of event. The key idea behind the custom counting units is that they can be multiplied, divided by any powers of distance, mass, currency, or time units and can be inverted. The primary usage of these is for units that are procedurally defined and often used in the context of per mass or per volume or per time or per $.

In strings these can be represented by “CXCUN[X]” Where X is some number between 0 and 15.

In C++ code they can be generated by

precise_unit new_cxc_unit=generate_custom_count_unit(code);

A set of checks and queries is available to check for custom_count_units.

	bool precise::custom::is_custom_count_unit(detail::unit_data udata);

	bool precise::custom::is_custom_count_unit_inverted(detail::unit_data udata);

	unsigned short precise::custom::custom_count_unit_number(detail::unit_data udata);

These checks will operate regardless of any m/kg/s unit combination or inverted units. Underlying this is a set of codes and unit powers that would be extremely odd to encounter in normal use.

Custom count units in Use

there are a few custom count units in use for specific clinical units Many of these units defy conversion to other known units but are used in pharmacological contexts
So there is no translation to other units and cannot be converted except to multiple of the same unit. There are often well established tests for these units but no good way to convert them to other units. Many of these units come from UCUM [https://unitsofmeasure.org/ucum.html].

	custom_count_unit(0): is used for specific count units with commodities of some kind for string translation

	custom_count_unit(1): is Arbitrary Unit which has a clinical definition of some kind

	custom_count_unit(2): is International Unit [https://en.wikipedia.org/wiki/International_unit]

	custom_count_unit(3): is Index of reactivity [http://finto.fi/ucum/en/page/r394] which has a clinical definition

	custom_count_unit(4): is limit of flocculation [http://finto.fi/ucum/en/page/r404] which has a clinical definition

	custom_count_unit(5): is HPF [https://medical-dictionary.thefreedictionary.com/high-power+field] or High Power field which is related to microscopy

	6-15 are not currently in use.

The other custom units are available for use or the one with known definition can be use if there is no domain conflicts.

Implementation details

Custom count units utilizes the flags, candela, ampere, and Kelvin fields to make use of some non-physical unit definitions for a more useful purpose.

Unit Domains

There are some ambiguous unit symbols. Different fields use the same symbol to mean different things. In the units library the definition has defaulted to SI standard definition with two known ambiguities. the symbol ‘a’ is used for are, the symbol rad refers to radians.

However there are occasions where the units from one field or another are desired. The units library applies the notion of a unit domain which can be passed to the unit_flags argument for any string conversion, for a few select units this will change the resulting from a string.

Available Domains

thus far 5 specific unit domains have been defined they are in the
units::domains namespace.

	ucum – THE UNIFIED CODE FOR UNITS OF MEASURE

	cooking – units and symbols commonly used for recipes

	astronomy – units and symbols used in astronomy

	nuclear – units and symbols used in nuclear or particle physics

	surveying – units and symbols used in surveying in the United states

	us_customary – units and symbols traditionally used in the us(combination of cooking and surveying)

	climate – units and symbols used in climate science

	allDomains – this domain does all the above domains where not mutually exclusive. So mostly a combination of ucum and astronomy/nuclear with a few us customary units IT is not recommended to use this but provided for the combinations

The only units and symbols using the domain are those that might be ambiguous or contradictory to the ST definition. The specific units affected are defined in the next section.

Domain Specific Units

These are unit definitions affected by specifying a specific unit domain

UCUM

	B – bel vs Byte

	a – julian year vs are

Astronomy

	am – arc minute vs attometer

	as – arc second vs attosecond

	year – mean tropical year vs median calendar year

Cooking

	C – cup vs coulomb

	T – Tablespoon vs Tesla

	c – cup vs speed of light

	t – teaspoon vs metric tonne

	TB – Tablespoon vs TeraByte

	smi – smidgen vs square mile

	scruple – slightly different definition when used in cooking context

	ds – dessertspoon vs deci second

Surveying

	‘ and all variants refer to feet vs arcmin

	‘’ and all variants refer to inches vs arcsec

Nuclear

	rad radiation absorbed dose vs radian

	rd same as rad vs rod

Climate

	kt kilo-tonne vs karat

US customary

Combination of surveying and cooking

All domains

Combination of all of the above

More units will likely be added to this as the need arises

Specifying the domain

The domain can be specified in the unit_flag string supplied to the unit_from_string operation.

auto unit1=units::unit_from_string(unitString,nuclear_units)

when used as part of the flags argument the definitions are in the unit_conversion_flags enumeration

	strict_ucum

	cooking_units

	astronomy_units

	surveying_units

	nuclear_units

	climate_units

	us_customary_units

A default domain can also be specified though

setUnitsDomain(code);

with the code using one of those found in the units::domains namespace.
this domain will be used unless another is specified through the match flags. This function return the previous domain which can be used if only setting the value temporarily.

The default domain can be set at compile time through the UNITS_DEFAULT_DOMAIN definition

#define UNITS_DEFAULT_DOMAIN units::domains::astronomy
#include "units/units.hpp"

In CMake this field can be defined and will be directly translated. The UNITS_DOMAIN CMake variable can also be used to specify a domain as a string like UCUM or COOKING and have it appropriately translate.
See Unit Library CMake Reference for more details.

Conversion Flags

The units_from_string and to_string operations take an optional flags argument. This controls certain aspects of the conversion process. In most cases this can be left to default unless very specific needs arise.

Unit_from_string flags

	default_conversions – no_flags, so using the default operations

	case_insensitive –perform case insensitive matching for UCUM case insensitive matching

	single_slash –specify that there is a single numerator and denominator only a single slash in the unit operations

	strict_si –input units are strict SI

	strict_ucum –input units are matching UCUM standard

	cooking_units –input units for cooking and recipes are prioritized

	astronomy_units –input units for astronomy are prioritized

	surveying_units –input units for surveying are prioritized

	nuclear_units –input units for nuclear physics and radiation are prioritized

	climate_units –input units for climate sciences

	us_customary_units – input units for us customary measurements are prioritized(same as cooking_units | surveying_units)

	numbers_only –indicate that only numbers should be matched in the first segments, mostly applies only to power operations

	no_recursion –don’t recurse through the string

	not_first_pass –indicate that is not the first pass

	no_per_operators –skip matching “per”

	no_locality_modifiers –skip locality modifiers

	no_of_operator –skip dealing with “of”

	no_addition – skip trying unit addition

	no_commodities –skip commodity checks

	skip_partition_check –skip the partition check algorithm

	skip_si_prefix_check –skip checking for SI prefixes

	skip_code_replacements –don’t do some code and sequence replacements

	minimum_partition_size2 –specify that any unit partitions must be greater or equal to 2 characters

	minimum_partition_size3 –specify that any unit partitions must be greater or equal to 3 characters

	minimum_partition_size4 –specify that any unit partitions must be greater or equal to 4 characters

	minimum_partition_size5 –specify that any unit partitions must be greater or equal to 5 characters

	minimum_partition_size6 –specify that any unit partitions must be greater or equal to 6 characters

	minimum_partition_size7 –specify that any unit partitions must be greater or equal to 7 characters

Indications for use

The case_insensitive flag should be used to ignore capitalization completely. It is targeted at the UCUM upper case specification but is effective for all situations where case should be ignored.

The library is by nature somewhat flexible in capitalization patterns, because of this some strings are allowed that otherwise would not be if SI were strictly followed. For example: Um would match to micro meters which should not if being exacting to the SI standard. The strict_si flag prevents some not all of these instances, and whether others can be disabled is being investigated.

The single_slash flag is targeted at a few specific programs which use the format of a single slash marking the separation of numerator from denominator.

strict_ucum, cooking_units, astronomy_units, surveying_units, nuclear_units, climate_units and us_customary_units are part of the domain system and can change the unit matched.

The remainder of the flags are somewhat self explanatory and are primarily used as part of the string conversion program to prevent infinite recursion. The no_commodities or no_per_operator may be used if it is known those do not apply for a slight increase in performance. The no_recursion or skip_partition_check can be use if only simple strings are passed to speed up the process somewhat.

The minimum partition size flags can be used to restrict how much partitioning it does which can reduce the possibility of “false positives” or unwanted unit matches on the strings

All the flags can be “or”ed to make combinations such as minimum_partition_size4|astronomy_units|no_of_operator

to_string Flags

	disable_large_power_strings - if the units definition allows large powers this flag can disable the use of them in the output string.

The to_string flags can be combined with the other conversion flags without issue.

Default flags

Flags will normally default to 0U however they can be modified through setDefaultFlags. This function returns the previous value in case it is needed to swap them temporarily.
The flags can be retrieved via getDefaultFlags() This function is automatically called if no flag argument is passed. The initial value can be set through a compile time or build time option UNITS_DEFAULT_MATCH_FLAGS.

Special Units

There are a few defined units that are special in some fashion, and can be used as sentinel values or have special operations associated with them.

Default Unit

The defunit unit is allowed to be converted to any other unit. it is equivalent of per-unit*i_flag The main use case is in the convert functions and makes a good

Error Unit

auto error_unit=unit(detail::unit_data(nullptr));

Invalid Unit

An invalid unit is any unit that is either the error unit or has a NaN in the multiplier. This is the unit returned from a string conversion if the string does not describe a unit or measurement.

one

The default constructor for unit and precise_unit is empty unit data and 1.0 in the multiplier.

There are also precise versions of these values in the precise namespace

Equation Units

The use of an equation flag in the unit_base defines a set of equation units. These are specific units where the relationship with other units is defined through an equation rather than a specific multiplier. There are 31 available equation units. Equation units use up the flags, count, and radian fields. All other units are left alone for defining the underlying units of the equation unit. So the equation specifier defines and equation rather than a specific unit.
equation types 0-15 deal with logarithms in some way, 16-31 are undefined or represent some common scale type units

to extract the equation type
- unsigned short precise::custom::eq_type(detail::unit_data udata);

Current equation definitions

	0: log10(x)

	1: nepers

	2: bels

	3: decibels

	4: -log10(x)

	5: -log10(x)/2.0

	6: -log10(x)/3.0

	7: -log10(x)/log10(50000)

	8: log2(x)

	9: ln(x)

	10: log10(x)

	11: 10*log10(x)

	12: 2*log10(x)

	13: 20*log10(x)

	14: log10(x)/log10(3)

	15: 0.5*ln(x)

	16: UNDEFINED

	17: UNDEFINED

	18: UNDEFINED

	19: UNDEFINED

	20: UNDEFINED

	21: UNDEFINED

	22: saffir-simpson hurricane wind scale

	23: Beaufort wind scale

	24: Fujita scale

	25: UNDEFINED

	26: UNDEFINED

	27: Prism diopter-100.0*tan(x)

	28: UNDEFINED

	29: Moment magnitude scale for earthquakes (richter)

	30: Energy magnitude scale for earthquakes

	31: UNDEFINED

The wind scales are not very accurate since they match up a slightly fuzzier notion to actual wind speed. There are general charts and the equations in use utilize a polynomial to approximate them to a continuous scale. So the units when used are generally convertible to a velocity unit such as m/s. There are currently 10 undefined equation units available if needed.

Equation Value conversions

The actual definitions of the equations are found in the unit::precise::equation namespace. Two functions are provided that convert values from equation values to units and vice versa.

	double convert_equnit_to_value(double val, detail::unit_data UT)

	double convert_value_to_equnit(double val, detail::unit_data UT)

also since some equation unit definitions depend on whether the actual units are power or magnitude values, there is a helper function to help determine this.
bool is_power_unit(detail::unit_data UT)
This applies in the neper, bel, and decibel units.

Application Notes

This folder is a collection of some example code snippets and discussions applied to various situations

	Strain

Strain

Strain is an interesting unit in that it is a dimensionless unit. The most common expression is in in/in or mm/mm often defined as ε. The effects of strain are pretty small so µε is also pretty common.
It is the fractional change in length. There are a several ways to represent this in the units library depending on the needs for a particular situation.

Method 1

The first way is simply as a ratio.

measurement deltaLength=0.00001*m;
measurement length=1*m;

auto strain=deltaLength/length;

EXPECT_EQ(to_string(strain), "1e-05");

//applied to a 10 ft bar
auto distortion=strain*(10*ft);
EXPECT_EQ(to_string(distortion), "0.0001 ft");

The main issue that there is no distinction between a strain measurement and any other ratio, but in many cases that is fine.

Method 2

The default defined unit of strain in the units library uses per unit meters as a basis. The multiplies and divides methods in the units math library can take per unit flag into account when doing the multiplication to get the original units back.
The advantages of this are that strain becomes a distinctive unit from all other ratio units. Volumetric or area strain can be represented in the same way. It does have the disadvantage of requiring the multiplies

#include <units/units_math.hpp> //for multiplies
precise_measurement strain=1e-05*default_unit("strain");
EXPECT_EQ(to_string(strain), "1e-05 strain");

//applied to a 10 ft bar
auto distortion=multiplies(strain,(10*ft));
EXPECT_EQ(to_string(distortion), "0.0001 ft");

#include <units/units_math.hpp> //for multiplies divides
measurement deltaLength=0.00001*m;
measurement length=1*m;

auto strain=divides(deltaLength,length);
EXPECT_EQ(to_string(strain), "1e-05 strain");

//applied to a 10 ft bar
auto distortion=multiplies(strain,(10*ft));
EXPECT_EQ(to_string(distortion), "0.0001 ft");

Method 3

The third potential method is to use one of the indicator flags to define a unit for strain. This can work in cases where there is no other potential conflicts with the flag and you need the * operator to work.

precise_unit ustrain(1e-6,eflag); // microstrain

addUserDefinedUnit("ustrain",ustrain);
precise_measurement strain=45.7*ustrain;
EXPECT_EQ(to_string(strain), "45.7 ustrain");

//applied to a 10 m bar
auto distortion=strain*(10*m);
EXPECT_DOUBLE_EQ(distortion.value_as(precise::mm),0.457);

The advantages of this are that the there is no per unit values to handle. The disadvantage is that the eflag needs to be handled particularly when dealing with strings. If it is just dealing with computations this is less of an issue.
So this method can work fine in some cases.

Discussion

There are several ways to represent strain or any other ratio unit that is derived from particular unit cancellations. All have advantages and disadvantages in particular situations and the method of choice will come down to the expected use cases.
The library chooses the per unit method as it maintains the source units, but other choices are free to choose if they work better in particular situations.

The Low Level Details of the Units library

	Unit base class

	Commodity Details

Unit base class

The unit base class is a bitmap comprising segments of a 32 bit number. all the bits are defined

the underlying definition is a set of bit fields that cover a full 32 bit unsigned integer

// needs to be defined for the full 32 bits
 signed int meter_ : 4;
 signed int second_ : 4; // 8
 signed int kilogram_ : 3;
 signed int ampere_ : 3;
 signed int candela_ : 2; // 16
 signed int kelvin_ : 3;
 signed int mole_ : 2;
 signed int radians_ : 3; // 24
 signed int currency_ : 2;
 signed int count_ : 2; // 28
 unsigned int per_unit_ : 1;
 unsigned int i_flag_ : 1; // 30
 unsigned int e_flag_ : 1; //
 unsigned int equation_ : 1; // 32

The default constructor sets all the fields to 0. But this is private and only accessible from friend classes like units.

The main constructor looks like

constexpr unit_data(
 int meter,
 int kilogram,
 int second,
 int ampere,
 int kelvin,
 int mole,
 int candela,
 int currency,
 int count,
 int radians,
 unsigned int per_unit,
 unsigned int flag,
 unsigned int flag2,
 unsigned int equation)

an alternative constructor

explicit constexpr unit_data(std::nullptr_t);

sets all the fields to 1

Math operations

When multiplying two base units the powers are added.
For the flags. The e_flag and i_flag are added, effectively an Xor while the pu and equation are ORed.

For division the units are subtracted, while the operations on the flags are the same.

Power and Root and Inv functions

For power operations all the individual powers of the base units are multiplied by the power number.
The pu and equation flags are passed through. For even powers the i_flag and e_flag are set to 0, and odd powers they left as is.
For root operations, First a check if the root is valid, if not the error unit is returned. If it is a valid root all the powers are divided by the root power. The Pu flag is left as is, the i_flag and e_flag are treated the same is in the pow function and the equations flag is set to 0.

There is one exception to the above rules. There is a special unit for √Hz it is a combination of some i_flag and e_flag and a high power of the seconds unit. This unit is used in amplitude spectral density and comes up on occasion in some engineering contexts. There is some special logic in the power function that does the appropriate things such the square of √Hz= Hz. If a low power of seconds is multiplied or divided by the special unit it still does the appropriate thing. But √Hz*√Hz will not generate the expected result. √Hz is a singular unique unit and the only coordinated result is a power operation to remove it. √Hz unit base itself uses a power of (-5) on the seconds and sets the i_flag and e_flag.

The inverse function is equivalent to pow(-1), and just inverts the unit_data.

Getters

The unit data type supports getters for the different fields all these are constexpr methods

	meter(): return the meter power

	kg(): return the kilogram power

	second(): return the seconds power

	ampere(): return the ampere power

	kelvin(): return the kelvin power

	mole(): return the mole power

	candela(): return the candela power

	currency(): return the currency power

	count(): return the count power

	radian(): return the radian power

	is_per_unit(): returns true if the unit_base has the per_unit flag set

	is_equation(): returns true if the unit_base has the equation field set

	has_i_flag(): returns true if the i_flag is set

	has_e_flag(): returns true if the e_flag is set

	empty(): will check if the unit_data has any of the base units set, flags are ignored.

	unit_type_count: will count the number of base units with a non-zero power

Modifiers

there are a few methods will generate a new unit based on an existing one the methods are constexpr

	add_per_unit(): will set the per_unit flag

	add_i_flag(): will set the i_flag

	add_e_flag(): will set the e_flag

The method clear_flags is the only non-const method that modifies a unit_data in place.

Comparisons

Unit data support the == and != operators. these check all fields.

There are a few additional comparison functions that are also available.

	equivalent_non_counting(unit_base other) : will return true if all the units but the counting units are equal, the counting units are mole, radian, and count.

	has_same_base(unit_base other): will return true if all the units bases are equivalent. So the flags can be different.

Commodity Details

The precise_unit class includes an unsigned 32 bit field that represents a commodity of some kind.

Units on the Web

You can try out the string conversions through the units
Webserver

This page allows you to enter a measurement string and a unit string for conversion.

The measurement string can be of any form with a number and units

	10 m

	hundred pounds

	45.673 GB

	dozen feet

the unit string should be some unit that is convertible from the measurement units:

	inches

	troy oz

	kiB

	british fathoms

The conversion also supports mathematical operations see Units From Strings for additional details on string conversions. The units can also be set to *`or `<base> to convert the measurement to base units.

Rest API

The units web server does not serve files, it generates all responses on the fly. There are 3 URI indicators it responds to beyond the root page.

	/convert : responds with an html page

	/convert_trivial : responds with the results as a simple text

	/convert_json : responds with a json string containing the requested conversions and the results.

For example in Linux or anything with curl

$ curl -s "13.52.135.81/convert_trivial?measurement=10%20tons&units=lb"
20000

$ curl -s "13.52.135.81/convert_json?measurement=10%20tons&units=lb"
{
"request_measurement":"",
"request_units":"lb"",
"measurement":"",
"units":"lb"",
"value":"nan"
}

 $ curl -s "13.52.135.81/convert_json?measurement=ten%20meterspersecond&units=feetperminute&caction=to_string"
{
"request_measurement":"ten meterspersecond",
"request_units":"feetperminute",
"measurement":"10 m/s",
"units":"ft/min",
"value":"1968.5"
}

This works with POST or GET methods. The caction field can be set to “to_string” this will “simplify” the units in the result or at least use the internal to_string operations to convert to an interpretable string in more accessible units.

Index

 _static/plus.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to The units library user guide and documentation!

 		
 Introduction

 		
 Why?

 		
 Design Requirements

 		
 Installation and Linking

 		
 Header Only Use

 		
 Compiled Usage

 		
 Standalone Library

 		
 Unit Library CMake Reference

 		
 User Guide

 		
 Units

 		
 Basic Unit Types

 		
 Basic operations

 		
 Comparison Operators

 		
 Methods

 		
 Measurements

 		
 Precise measurements

 		
 Fixed Measurements

 		
 Relationship with numbers

 		
 Interactions with measurement

 		
 Uncertain Measurements

 		
 Constructors

 		
 Additional operators

 		
 String operations

 		
 Units From Strings

 		
 Unit Strings

 		
 Measurement strings

 		
 Uncertain Measurements

 		
 Units To Strings

 		
 Advanced Usage

 		
 Stream Operators

 		
 Underlying Conversion Map Access

 		
 Math Operations

 		
 Type traits

 		
 Rounding and Truncation

 		
 Trigonometric functions

 		
 Multiplies and divides

 		
 Others

 		
 Commodities

 		
 Methods

 		
 Commodities to names

 		
 String To Commodities

 		
 Defined Commodities

 		
 User defined units

 		
 Defining a custom unit

 		
 Input File

 		
 Other Library Operations

 		
 Notes on units and threads

 		
 Physical constants

 		
 Defined constants

 		
 Planck Units

 		
 Atomic units

 		
 Numbers

 		
 Planetary masses

 		
 From Strings

 		
 Uncertainties

 		
 Defined Units

 		
 Listing of Units

 		
 Units in the units namespace

 		
 Custom Units

 		
 Custom units in Use

 		
 Implementation Details

 		
 Custom Counting Units

 		
 Custom count units in Use

 		
 Implementation details

 		
 Unit Domains

 		
 Available Domains

 		
 Domain Specific Units

 		
 Specifying the domain

 		
 Conversion Flags

 		
 Unit_from_string flags

 		
 to_string Flags

 		
 Special Units

 		
 Default Unit

 		
 Error Unit

 		
 Invalid Unit

 		
 one

 		
 Equation Units

 		
 Equation Value conversions

 		
 Application Notes

 		
 Strain

 		
 Method 1

 		
 Method 2

 		
 Method 3

 		
 Discussion

 		
 The Low Level Details of the Units library

 		
 Unit base class

 		
 Math operations

 		
 Getters

 		
 Modifiers

 		
 Comparisons

 		
 Commodity Details

 		
 Units on the Web

 		
 Rest API

